This is a simple example of how to use \textbf{'MixFishSim'} to generate simulations of the dynamics in a mixed fishery. We describe how to calibrate the habitat fields, the population models, the fishery model and implement a simple fixed spatial closure. \
First, load the packages and set a seed for reproducibility.
#install.packages('devtools') #install.packages('githubinstall') # library(devtools) # library(githubinstall) # install_github("pdolder/MixFishSim") # # # githubinstall("MixFishSim") #install.packages('Rcpp') #install.packages('Rtools') #install.packages('MixFishSim') library(MixFishSim) #library(knitr) #opts_chunk$set(tidy = TRUE) #library(reshape2) #set.seed(123)
This vignette is a paired down example of how to construct a simulation using MixFishSim. We include only a basic example and encourage users to explore the other features of the package. \
First we specify the basic parameters of the simulation. This includes the dimensions of the spatial domain, the number of years to simulate, the number of fleets and vessels per fleet and the number of species and how often (in weeks) the fish move.
The object returned is used internally by MixFishSim a list with two levels:
#NEW VERSION that has week breaks for entire simulation # source("R/init_sim_Bens.R") # sim <- init_sim_Bens(nrows = 100, ncols = 100, n_years = 20, n_tows_day = 1, # n_days_wk_fished = 1, n_fleets = 1, n_vessels = 0, n_species = 2, # move_freq = 1) #NEW VERSION that has week breaks for entire simulation and allows fishing on just 1 day per week source("R/init_sim_Bens_nofish.R") sim <- init_sim_Bens_nofish(nrows = 100, ncols = 100, n_years = 1, n_tows_day = 1, n_days_wk_fished = 1, n_fleets = 1, n_vessels = 1, n_species = 2, move_freq = 1) class(sim) sim$idx names(sim$brk.idx)
This function creates the spatial fields which support the fish populations and determine their spatial distributions. You define the parameters for the matern covariance function for each population and optionally the location of any spawning closure areas.
It returns a list of suitable habitat for each species (hab), the habitat as adjusted during the spawning period (spwn_hab) and the binary location of spawning areas (spwn_loc). It also returns the locations as x1,x2,y1,y2 and the multiplier of attractiveness to the spawning area during spawning periods (spwn_mult).
If plot.dist = TRUE, it returns the plots to a file.
source("R/BENS_plot_habitat.R") #values settled on from anisotropy and habtest scripts spp.ctrl = list( "spp.1" = list('nu' = 1/0.05, 'var' = 1, 'scale' = 5, 'Aniso' = matrix(nc = 2, c(1.5, -3, 3, 4) )), "spp.2" = list('nu' = 1/0.015, 'var' = 1, 'scale' = 25, 'Aniso' = matrix(nc = 2,c(1, -2, 1, 2))), plot.dist = TRUE, plot.file = "testfolder" ) #DEFINING UNIFORM NXN GRID #defining strata coordinates #number of rows and columns to define (assume want n equal sized strata) nrows <- 4 ncols <- 4 #of the form c(x1, x2, y1, y2) THESE ARE BOUNDARIES OF STRATA VALUES # xs are rows ys columns strata_num <- 1 stratas <- list() for(r in seq(nrows)){ for(c in seq(ncols)){ stratas[[paste("strata",strata_num,sep="")]] = c( (r-1)*(sim$idx[["nrows"]]/nrows)+1, (r)*(sim$idx[["nrows"]]/nrows) , (c-1)*(sim$idx[["ncols"]]/ncols)+1 , (c)*(sim$idx[["ncols"]]/ncols) ) strata_num <- strata_num +1 } } #DEFINING RANDOM NXN GRID #size of our domain totalrows <- 100 totalcols <- 100 #desired dimentions of strata nrows <- 5 ncols <- 6 #of the form c(x1, x2, y1, y2) THESE ARE BOUNDARIES OF STRATA VALUES # xs are rows ys columns strata_num <- 1 stratas <- list() #generate randow sequence of rows rowind <- sort(sample(seq(totalrows),nrows-1,replace=FALSE)) rowind <- c(1,rowind,totalrows) row_idx <- 0 for(r in seq(length(rowind)-1)){ row_idx <- row_idx+1 #generate random sequence of columns colind <- sort(sample(seq(totalcols),ncols-1,replace=FALSE)) colind <- c(1,colind,totalcols) col_idx <- 0 for(c in seq((length(colind)-1))){ col_idx <- col_idx+1 stratas[[paste("strata",strata_num,sep="")]] = c( rowind[row_idx] , rowind[row_idx+1] , colind[col_idx] , colind[col_idx+1]) strata_num <- strata_num +1 } } source("R/BENS_create_hab.R") hab <- BENS_create_hab(sim_init = sim, spp.ctrl = spp.ctrl, spawn_areas = list( "spp1" = list( 'area1' = c(30,45,55,65), #of the form c(x1, x2, y1, y2) THESE ARE BOUNDARIES OF MATRIX VALUES 'area2' = c(70,90,50,60) #need to revisit closure areas ), "spp2" = list( 'area1' = c(30,45,55,65), 'area2' = c(70,90,50,60) )), spwn_mult = 10,#THIS DOES NOT CHANGE ANYTHING. MUST CHANGE VALUE AT TOP OF BENS_CREATE_HAB plot.dist = F, plot.file = "testfolder", #created this new part defining strata strata = stratas ) #plot strata par(mar=c(1,1,1,1)) fields::image.plot(hab$stratas) #print(hab) source("R/BENS_plot_habitat.R") ## Plot the unadjusted habitat fields BENS_plot_habitat(hab = hab$hab, spp.ctrl = spp.ctrl) #old version plot_habitat(hab$hab) ## Plot the adjusted habitat fields plot_habitat(hab$spwn_hab)
Now we need to set up the population models for the simulations. We do this with the init_pop function. We set the initial population biomasses, movement rates, recruitment parameter and growth and natural mortality rates.
The object created stores all the starting conditions and containers for recording the changes in the populations during the simulations.
We can plot the starting distributions for each population as a check.
#load rcpp exports Rcpp::sourceCpp(file= "src/Movement.cpp") Rcpp::sourceCpp(file= "src/RcppExports.cpp") Rcpp::compileAttributes() #this updates RcppExports.R file, which contains function definitions #CALULATE INDICES OF NONZERO VALUES IN HAB TO PASS TO MOVE_POPULAITON DURING MOVEMENT nonzero_idx <- lapply(paste0("spp", seq_len(sim$idx[["n.spp"]])), function(s) { which(hab[["hab"]][[s]] >0 , arr.ind=T) }) names(nonzero_idx) <- paste("spp",seq_len(sim$idx[["n.spp"]]), sep ="") #Week 13 is first week of april #half way through april to half way through may would be week 15-18 source("R/init_pop_Bens.R") #original settings # Pop <- init_pop_Bens(sim_init = sim, Bio = c("spp1" = 2e5, "spp2" = 4e5), #these values from paper : 1e5 and 2e5 # hab = hab[["hab"]], start_cell = c(50,50), # lambda = c("spp1" = 0.1, "spp2" = 0.1), #same lambda for all? # init_move_steps = 20, # rec_params = list("spp1" = c("model" = "BH", "a" = 6, "b" = 4, "cv" = 0.7), # "spp2" = c("model" = "BH", "a" = 27, "b" = 4,"cv" = 0.6)), #these values from paper # rec_wk = list("spp1" = 12:15, "spp2" = 12:15), # spwn_wk = list("spp1" = 15:18, "spp2" = 15:18), # M = c("spp1" = 0.2, "spp2" = 0.1), #these values from paper: c("spp1" = 0.2, "spp2" = 0.1) # K = c("spp1" = 0.3, "spp2" = 0.3) #all the same for now # ) #decreasing population settings Pop <- init_pop_Bens(sim_init = sim, Bio = c("spp1" = 4e5, "spp2" = 10e5), #these values from paper : 1e5 and 2e5 hab = hab[["hab"]], start_cell = c(50,50), lambda = c("spp1" = 0.1, "spp2" = 0.1), #same lambda for all? init_move_steps = 20, rec_params = list("spp1" = c("model" = "BH", "a" = 2, "b" = 4, "cv" = 0), "spp2" = c("model" = "BH", "a" = 7, "b" = 4,"cv" = 0)), #these values from paper rec_wk = list("spp1" = 15:18, "spp2" = 15:18), spwn_wk = list("spp1" = 15:18, "spp2" = 15:18), M = c("spp1" = 0.275, "spp2" = 0.225), #these values from paper: c("spp1" = 0.2, "spp2" = 0.1) K = c("spp1" = 0.3, "spp2" = 0.3), #all the same for now nz = nonzero_idx ) #I PUT THIS BACK INSIDE RUN_SIM # #Calculate movement probabilities (used to be in run_sim) # Move_Prob <- lapply(paste0("spp", seq_len(sim[["idx"]][["n.spp"]])), function(s) { move_prob_Lst(lambda = Pop[["dem_params"]][[s]][["lambda"]], hab = hab[["hab"]][[s]])}) # # # Move_Prob_spwn <- lapply(paste0("spp", seq_len(sim[["idx"]][["n.spp"]])), function(s) { move_prob_Lst(lambda = Pop[["dem_params"]][[s]][["lambda"]], hab = hab[["spwn_hab"]][[s]])}) # # # names(Move_Prob) <- paste0("spp", seq_len(sim[["idx"]][["n.spp"]])) # names(Move_Prob_spwn) <- paste0("spp", seq_len(sim[["idx"]][["n.spp"]])) names(Pop) Pop$dem_params par(mfrow = c(2,1)) image(Pop$Start_pop[[1]], main = "spp1 starting biomass") image(Pop$Start_pop[[2]], main = "spp2 starting biomass")
Now we set up the population tolerance to different temperatures which determines how the populations move during the course of a year. We can then plot the combined spatiotemporal suitable habitat to examine how these interact.
#set temperature preferences manually. #The following assumes moveCov has been created and already has an empty spp_tol sublist moveCov[["spp_tol"]] <- list() #just in case moveCov[["spp_tol"]] <- list("spp1" = list("mu" = 7.98, "va" = 3), #8.13 IF TEMP INCREASES 7.98 if temp constant "spp2" = list("mu" = 7.98, "va" = 3) ) plot(norm_fun(x = 0:25, mu = 8.3, va = 3)/max(norm_fun(0:25, 8.3, 3)), type = "l", xlab = "Temperature", ylab = "Tolerance", lwd = 2) lines(norm_fun(x = 0:25, mu = 15, va = 9)/ max(norm_fun(0:25, 15, 9)), type = "l", col = "blue", lwd = 2) lines(norm_fun(x = 0:25, mu = 17, va = 7)/ max(norm_fun(0:25, 17, 7)), type = "l", col = "green", lwd = 2) legend(x = 2, y = 0.9, legend = c("spp1", "spp2"), lwd = 2, col = c("black", "blue")) # plot_spatiotemp_hab(hab = hab, moveCov = moveCov, spwn_wk = list("spp1" = 15:18, "spp2" = 15:18), plot.file = "testfolder") # # # # #to plot just the temp preferences over time # source("R/BENS_plot_spatiotemp_hab_justtemp.R") # # BENS_plot_spatiotemp_hab_justtemp(hab = hab, moveCov = moveCov, spwn_wk = list("spp1" = 16:18, "spp2" = 16:19,"spp3" = 16:18, "spp4" = 18:20), plot.file = "testfolder") #
Here we initialise the fleet with fish landings price per tonne, catchability coefficients per population, fuel cost, the coefficients for the step function and fleet behaviour.
We can plot the behaviour of the step function to check its suitable for our simulations. This determines the relationship between the monetary value gained from a fishing tow and the next move by the vessel when using the correlated random walk function.
#initial settings # fleets <- init_fleet(sim_init = sim, VPT = list("spp1" = 4, "spp2" = 3), # Qs = list("fleet 1" = c("spp1" = 1e-5, "spp2" = 3e-5), # "fleet 2" = c("spp1" = 5e-5, "spp2" = 1e-5) # ), # fuelC = list("fleet1" = 3, "fleet 2" = 8), # step_params = list("fleet 1" = c("rate" = 3, "B1" = 1, "B2" = 2, "B3" = 3), # "fleet 2" = c("rate" = 3, "B1" = 2, "B2" = 4, "B3" = 4) # ), # past_knowledge = TRUE, # past_year_month = TRUE, # past_trip = TRUE, # threshold = 0.7 # ) #no fishing fleets <- init_fleet(sim_init = sim, VPT = list("spp1" = 0, "spp2" = 0), #VPT = value per ton Qs = list("fleet 1" = c("spp1" = 0, "spp2" = 0) #Q = catchability ), fuelC = list("fleet1" = 3), step_params = list("fleet 1" = c("rate" = 3, "B1" = 1, "B2" = 2, "B3" = 3) ), past_knowledge = FALSE, #dont use past knowledge past_year_month = TRUE, past_trip = TRUE, threshold = 0.7 ) test_step(step_params = fleets$fleet_params[[1]]$step_params, rev.max = 1e2) test_step(step_params = fleets$fleet_params[[2]]$step_params, rev.max = 1e2)
We set up a spatial closure. There are multiple options in defining this, but we simply define a static fixed site closure for demonstration purposes.
# #practice creating a larger data.frame than just single points # library(tidyr) # # #set x and y min/max which are coordinates on the grid # xmin <- 6 # xmax <- 10 # ymin <- 26 # ymax <- 40 # # # x <- xmin:xmax # y<- ymin:ymax # # #View(crossing(x,y)) # # closure <- init_closure(input_coords = data.frame(x = x, y = y), # spp1 = "spp1", year_start = 2)
Its also possible to define a survey design using the init_survey function, but we do not do so for this demonstration. Please refer to the function help file if this is required.
source("R/BENS_init_survey.R") #CURRENTLY NEED TO MAKE SURE THAT N_STATIONS*#YEARS / #STRATA IS A WHOLE NUMBER OTHERWISE DAY, TOW, YEAR WONT LINEUP WITH NUMBER OF STATIONS #ALSO NEED N_STATION TO BE DIVISIBLE BY STATIONS_PER_DAY #ALSO NEED N_STATIONS / STATIONS_PER_DAY <= 52 otherwise wont get to all of them in a year results in NA in the matrix #setup catch log surv_random <- BENS_init_survey(sim_init = sim,design = 'random_station', n_stations = 80, #this is total per year (20 in each of 4 strata) start_day = 1, stations_per_day = 1, Qs = c("spp1" = 0.1, "spp2"= 0.2), strata_coords = hab$strata, strata_num = hab$stratas )
Finally we run the simulation. The output is a list of objects containing all the information on fisheries catches, the population dynamics and population distributions. These can be examined with some inbuilt plotting functions.
run_simulation <- function(x){ source("R/run_sim.R") #to source a new go_fish where I edited to skips most things: #1: load file source("R/go_fish_Bens.R") #my edited version that skips most things #2: allow the function to call other hidden functions from mixfishsim environment(go_fish_Bens) <- asNamespace('MixFishSim') #3: replace go_fish with go_fish_Bens in the MixFishSim package assignInNamespace("go_fish", go_fish_Bens, ns = "MixFishSim") source("R/RcppExports_Bens.R") #to source a new move_population where I edited to skips most things: #1: load file Rcpp::sourceCpp("src/Movement_Bens.cpp") #my edited version that skips most things #2: allow the function to call other hidden functions from mixfishsim environment(move_population_Bens) <- asNamespace('MixFishSim') #3: replace move_population with go_fish_Bens in the MixFishSim package assignInNamespace("move_population", move_population_Bens, ns = "MixFishSim") library(MixFishSim) #each core needs to load library #load data from CPU # load("C:/Users/benjamin.levy/Desktop/Github/READ-PDB-blevy2-toy/20 year moveCov matrices/Final/Final_moveCov_12_9_Bensmethod.RData") #load constant temp data from Mars #load("/net/home5/blevy/Bens_R_Projects/READ-PDB-blevy2-toy/20 year moveCov matrices/Final/Final_constanttemp_20yr.RData") #load increase temp data from Mars load("/net/home5/blevy/Bens_R_Projects/READ-PDB-blevy2-toy/20 year moveCov matrices/Final/Increase_temp_20yr_LargerTempVA7.RData") res<- run_sim(sim_init = sim, pop_init = Pop, move_cov = moveCov, fleets_init = fleets, hab_init = hab, save_pop_bio = TRUE, survey = NULL, #surv_random, will try to survey after simulation closure = NULL, InParallel = TRUE, nz = nonzero_idx) #does it runin parallel? Doesnt seem like it } #run in parallel library(parallel) nCoresToUse <- detectCores() - 1 #this show 16 cores but I think I have 6?? nCoresToUse <- 6 cl <- parallel::makeCluster(nCoresToUse,revtunnel = TRUE, outfile = "", verbose = TRUE, master=nsl(Sys.info()['nodename'])) #options from https://stackoverflow.com/questions/41639929/r-cannot-makecluster-multinode-due-to-cannot-open-the-connection-error result <- list() result <- parallel::parLapply(cl,1:6,run_simulation) parallel::stopCluster(cl) # # #below throws an error # #result <- foreach(i=1:3) %dopar% run_simulation(i) # # #below throws a similar error: 3 nodes produced errors; first error: missing value where TRUE/FALSE needed # parLapply(cl,1:3,run_simulation) # stopCluster(cl)
There are a series of input plotting functions to visualise the results of the simulation. For example, we can explore:
Users will wish to define their own plots, depending on the issues of interest and all the results are saved in the output from the run_sim function.
## Biological source("R/plot_pop_summary.R") p1 <- plot_pop_summary(results = res, timestep = "annual", save = FALSE, save.location = NULL ) plot_pop_summary(results = res, timestep = "daily", save = FALSE, save.location = "C:/Users/benjamin.levy/Desktop/Github/READ-PDB-blevy2-toy/testfolder") p1 p2 <- plot_daily_fdyn(res) p2 ## Fishery logs <- combine_logs(res[["fleets_catches"]]) p3 <- plot_vessel_move(sim_init = sim, logs = logs, fleet_no = 1, vessel_no = 5, year_trip = 5, trip_no = 10) p3 p4 <- plot_realised_stepF(logs = logs, fleet_no = 1, vessel_no = 1) p4 #try some new ones #plot survey 2 ways p5 <- plot_survey(survey = res$survey, type = "spatial") p5 p6 <- plot_survey(survey = res$survey, type = "index") p6 #spatio temporal population plots source("R/Bens_plot_pop_spatiotemp.R") p7 <- Bens_plot_pop_spatiotemp(results = res, save = TRUE, save.location = "testfolder/spatialplots" ) p7
Note in our example how the fishing mortality rate for species 2 changes following the spatial closure, which was set to cover some of the core distribution of the population.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.